PHYSICS QUESTION PAPER

Time:	2. Hrs. Max. Maths:	1 0
Q. 1.	Select and write the most appropriate answer from the given alternatives for each su	b -
	question:	8}
(i)		(1)
	(a) Watt/ m^2 (b) Watt m^2 (c) Watt/ m^2 K (d) Watt. m^2 /K	
(ii)	For two vibrating bodies to be in resonance, which of the following quantity should	be
		(1)
****	(a) Wavelength (b) Frequency (c) Amplitude (d) Wave-velocity	
(iii)		(1)
	(a) once maximum (b) once minimum	
(i)	(c) once maximum and once minimum (d) twice maximum and twice minimum. The making of provider of a colid sphere of mace (A) and coding (B) continue about an experience of the coline (B) and coding (B) are the continue of the coline (B).	مند
(1V)	The radius of gyration of a solid sphere of mass 'M' and radius 'R' rotating about an a	KIS:
	coinciding with its diameter is(1)	
	(a) $\sqrt{\frac{1}{5}} \cdot R$ (b) $\sqrt{\frac{2}{5}} \cdot R$ (c) $\sqrt{\frac{3}{5}} \cdot R$ (d) $\sqrt{\frac{7}{5}} \cdot R$	
6.3	· · · · · · · · · · · · · · · · · · ·	
(V)	The weight of body is maximum	
	(a) at poles of the earth (b) at equator of the earth (c) below the surface of the earth (d) above the surface of the earth	
(s.÷)	A stone is tied to a string and rotated in horizontal circle with constant angular velocity. If I	ha
(VI)		
	(a) radially inward (b) radially outward	(1)
	(c) tangentially forward (d) tangentially backward	
(vii)		ım
(****)	2	
	(a) 0.02 m (b) 0.03 m (c) 0.04 m (d) 0.05 m	(1)
(viii)		1111
(*114)	1	
	m. Young's modulus of the wire is	(1)
	(a) 10^{3} N/m^2 (b) 10^{9} N/m^2 (c) 10^{11} N/m^2 (d) 10^{12} N/m^2	
	A) Attempt any ONE;	[8]
(i)	A metal sphere cools at the rate of 4° C per minute at the temperature of 60° C. Calculate	he
	· · · · · · · · · · · · · · · · · · ·	(2)
(ii)	A torque of magnitude 1000 Nm acting on a body, produces an angular acceleration	of
	2rad/s². Calculate the moment of inertia of the body.	(2)
(B)	Attempt any TWO:	
(i)	Draw neat diagrams of the parallel and perpendicular positions of the turning fork in Meld	e's
	experiment for the same length and same tension with the formation of the loops and wi	tite
	the formula for the frequency of the vibrating tuning fork in each position.	(3)
(ii)	Derive the expression for the strain energy. Hence show that strain energy per unit volume	: is
	directly proportional to square of the stress.	(3)
(iii)	Obtain an expression for maximum speed with which a vehicle can be driven safely or	n a
	banked road. Show that the safety speed limit is independent of the mass of the vehicle.	(3)
Q.3 (A	A) Attempt any ONE:	[8]
(i)	Define angular S.H.M. State its differential equation.	(2)
(ii)	State 'any four' assumptions of Kinetic theory of gases.	(2)
(B)	Attempt any TWO:	
(i)	State and prove the principle of perpendicular axes.	(3)

(3) closed (3) [8]
closed (3)
(3)
(3)
ts of a
(2)
(2)
(2)
(2)
cartain
certain
(4)
d by a
(4)
[8]
, is the
(4)
some
ion of
(4)
r) in S.
(4)
Co C