PHYSICS QUESTION PAPER

Time:	2 Hrs.						Max. M.	arks : 40
Q. 1	Select and the write most appropria	ate a	nsw	er fro m th	e give	n ál	ternatives f	or each
(i)	A stone is tied to a string and rotated in the string is released, the stone files	•••••				stan	it angular ve	locity. If
				ally outwar				
<u>`</u>	(c) tangentially forward.						1 -1-1 4	
(ii)	radius of the earth (R) then the change				eeartn	to a	neignr equa	(1)
/;;; \	(a) $\frac{1}{4}$ mg R (b) $\frac{1}{2}$ mg R The compressibility of a substance is the			mg R		(d)	2 mg R	(1)
(111)				modulus	•			(1)
				son's ratio	1			
(iv)	The motion of a simple pendulum is		• ;					(1)
` '	(a) oscillatory but not periodic			odic but not	oscilla	tory	<u>:</u>	11/
	(c) neither periodic nor oscillatory							
(v)	The amount of energy radiated per secon							(1)
				of surface	•	•		
	(c) mass of the body	(d)	tem surr	perature diff	ference	of th	he surface an	d ·
(vi)					wavel	engt	th of stationa	ry wave (1)
	(a) $\frac{1}{2}$ (b) $\frac{1}{4}$	(c)	I		(d)	21	n.
(vii)	is two times its wave velocity, then-wa	ave le	engt c)	h of the wa 31.4 cm	ve is	 (d)	157 cm	(1)
(* * 11)	The fillis. Velocity of the molecules mos	v meg v	** 1616	velocities z	111/3/4	111, 3	dia only 5 i	(1)
	(a) 28 m/s	(b)	3m/	' s				(2)
		(d)	•					
0.2 (A) Attempt any ONE:	(-)	' '	, 0	,			[8]
	A torque of magnitude 1000 N m actin	ng on	ιaˈt	ody, produ	ces an	ang	ular accelera	
\	rad/s ² . Calculate the moment of inertia	~		•		,		(2)
(ii)	If the r.m.s. velocity of oxygen molecules at N.T.P. is 460 m/s, determine the r.m.s. velocity of hydrogen molecules at N.T.P. Molecular weight of oxygen = 32 Molecular weight of							
(B)	hydrogen = 2 Att empt a ny TWO :							(2)
		v	2 .					
	For a conical pendulum, prove that tan			1 .				(3)
(ii)	.			2				(3)
	Define angle of contact. State the chara A) Attempt any ONE:	acteris	stics	or angle of	contact	t.		. (3) ;
(i)	Obtain relation between linear velocity	y and	ang	gular velocit	y of a	parti	icle in U.C.M	. (2)
(ii)	Explain how law of length can be verifi	ied by	usi usi	ng a sonome	eter.			(2)
(B) A	itempt any TWO:						1	(.5)
(i)	State Newton's law of net loss of heat,	hence	e sh	ow that $\frac{d\theta}{4}$	×(θ − θ ₀)	ž.	(3)
(ii)	Derive an expression for height of liquid.	uid co	olum	n when a c	apillary	is.	vertically dip	ped in a (3)
(iii)		theor	ry o	f gases. Dec	luce Bo	yle'	s law on the	

Q.4 (A)	Attempt any TWO:					
(i)	Give graphical representation of S.H.M. when particle starts from the positive extreme					
	position. (2)					
(ii)	Draw a neat labelled diagram of experimental set up of determination of Young's modulus					
	by Searle's method. (2)					
(iii)	Represent graphically energy distribution of a black body against wavelength at various					
	temperatures. (2)					
(B) Att	empt any ONE:					
(i)	Derive an equation of a simple harmonic progressive wave and express it in different forms.					
	(4)					
(ii)	Obtain an expression for the M. I. of a solid cylinder about an axis passing through its centre					
	perpendicular to its length. (4)					
Q.5 At	tempt any TWO:					
(i)	A satellite is resolving round the earth in a circular orbit with the critical velocity 7 km/s.					
	Find the radius of the orbit of the satellite and period of its revolutions.					
**	$[G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2; M = 5.98 \times 10^{24} \text{ kg}] $ (4)					
(ii)	The period of a simple pendulum increases by 10% when its length is increased by 21 cm.					
	Find the original length and period of the pendulum. $(g = 9.8 \text{ m/s}^2)$ (4)					
(iii)	The consecutive harmonics of an air column closed at one end are 405 Hz and 675 Hz					
	respectively. Find the fundamental frequency of the similar air column but open at both					
	ends. (4)					