PHYSICS QUESTION PAPER

Max . Marles: 40

Time: 2 Hrs.

Note :		Attempt all questions.				
	(<i>II</i>)	Neat diagrams must be drawn, wherever necessary.				
	(in)	Figures to the right indicate full marks.				
	(v)	Use of only logarithmic table is allowed.				
	•	All symbols have their usual meanings unless otherwise stated. Answer to every question must be written on a new page.				
	Select and write the most appropriate answer from the given alternatives for each sub-question:					
	(i)	For constructive interference the phase difference between two				
		waves must be	1)			
		(a) $0, \pi, 2\pi, 3\pi$	• ,			
		(b) π , 3π , 5π , 7π				
		(c) $0, 2\pi, 4\pi, 6\pi$				
		(d) $0, 3\pi, 6\pi, 9\pi$				
		The capacity of a par lel plate condenser is inversely proportional to	1)			
		(a) area of each plate	.,			
		(b) dielectric constant				
	((c) permittivity of medium				
		(d) distance between two plates				

(iii) .	Phot	o cell converts light	energy	' into	(1)
		mechanical energy			
	(b)	sound energy	٠	هم.	
;	(c)	electrical energy	• • •	••••	
•					
(iv)	Opti	cal fibre works on th	e princ	ciple of	(1)
	(a)	total internal refrac	tion		
	(b)	total internal reflec	tion		
		polarisation			
•	(d)	interférence			
(v)	The	absorption or evolution	ion of l	heat at a junction of two	
	diss	imilar-metals:when the	ie cuff	ent passes is known as	(1)
	(a)	Seebeck effect			
		Peltier effect.			
۱, ,		'Thomson effect		•	
	(d)	Joule effect	•		
(vi)	The	comput of AND gate	iš	; ; ;	(1)
	(a)	$Y = A \cdot B$	(b)	'Y=A+B :	
ų,	(c)	Y = A + B	(d)	$Y = A \cdot B$	
(vii)	The	angle of incidence at	t which	the polarisation of light	
	refle	ected from the surfac	e of g	lass is 58° then refractive	
	inde	ex of glass is			(1)
	(a)	1-9	(b)	1.8	
	• •	1.7		1.6	
(viii)) In a	tangent galvanomete	er defle	ection of 30° is produced by a	
				60° will be produced by a	
		ent of			(1)
	(a)	3 A	(b)	2 A. 172. 172.7	
	(c)	0-3 A	(d)	0·2 A	

Q. 2.	(A)	Attempt any ONE:	
	· (i)	In a potentiometer the balancing length of the string is found to be 2.5 m for a cell of e.m.f. 1.5 yolt. Find the balancing length of the string for another cell of e.m.f. 1.2 volt on the same potentiometer.	(2)
	(ii)	In biprism experiment a source of wavelength 6500Å is	
		replaced by source of wavelength 5500Å . Calculate change in	
		fringe width if the screen is at 1 m dis the slits which	
		are 1 mm apart.	- (2)
	(B)	Attempt any TWO:	
	(i)	Explain how a moving coil galvanometer is converted into an	
		ammeter. Derive the necessary formula.	(3)
	(ii)	Obtain an expression for the e.m.f. induced in a coil rotating in	
		uniform magnetic field.	(3)
	(iii)	What do you mean by remote sensing? State any 'four'	
		applications of remote sensing.	(3)
Q. 3.	(A)	Attempt any ONE:	
	(i)	Explain Huygens' construction of spherical wavefront.	(2)
	(ii)	State and explain Ampere's circuital law.	(2)
	(B)	Attempt any TWO:	
	(i)	Derive an expression for energy stored in a charged condenser.	
		Obtain its different forms.	(3)
	(ii)	Explain with neat circuit diagram how will you determine	
		unknown resistance by using meterbridge experiment.	(3)
	(iii)	State Einstein's photoe:lectric equation. Explain 'two'	
		characteristics on the basis of this equation.	(3)

	(i)	Draw a neat labelled diagram of reflection of light from a		
		plane reflecting surface on the basis of wave theory.	(2)	
	(ii)	State Gauss' theorem and state its any 'two' applications.	(2)	
	(iii)	Draw a neat labelled energy level diagram of the Hydrogen atom.	(2)	
	(B)	Attempt any ONE:		
	(i)	Give analytical treatment of interference bands and hence obtain the expression for fringe width.		
	(ii)	What is rectifier? Explain with neat circuit diagram the action of semiconductor diode as a full wave rectifier.	(4)	
Q. 5.	Atte	empt any TWO :		[8]
	(i)	Calculate the magnitude of magnetic induction and magnetic potential due to a short magnetic dipole of moment 10 A m ² at a distance 100 cm from its centre along a line making an angle of 60° with its axis.	(4)	
	(::)	$[\mu_0 = 4 \pi \times 10^{-7} \text{ Wb/Am}]$ The chartest wavelength for Large spring in a sec. Find shortest	. (4)	
	(ii)	The shortest wavelength for Lyman series is 912(E. Find shortest wavelength for Paschen and Brackett series in Hydrogen atom.	(4)	
	(iii)	An alternating e.m.f. $e=220\sin{(120\pi t)}$ volt is applied to a bulb of resistance 110Ω . Find peak value, effective value, frequency and period of alternating current through	•	
		bulb.	(4)	

[8]

Q. 4. (A) Attempt any TWO: